Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides

نویسندگان

  • Pablo Fernández
  • Ricardo Alcántara-de la Cruz
  • Hugo Cruz-Hipólito
  • María D. Osuna
  • Rafael De Prado
چکیده

Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa, and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor) was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha(-1)) compared with the GR50 (1484.6 g ai ha(-1)) found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP), cyclohexanedione (CHD) and phenylpyrazoline (PPZ) inhibiting herbicides. Both R and S biotypes had a similar (14)C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 h after treatment (HAT). The metabolism of (14)C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment). The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance of various biotypes of Canary grass (phalaris. Spp) to acetyl-CoA carboxylase-inhibiting herbicides.

Little seed canary grass (Phalaris minor L.) is a major weed in wheat fields in some parts of Iran. To evaluate the efficacy of molecular and greenhouse methods in detecting the resistance of 49 biotypes of canary grass(Phalaris. Spp) to acetyl-CoA carboxylase-inhibiting herbicides, two methods including whole plant screening and PCR-based molecular methods were applied. Results showed that the...

متن کامل

Ile-1781-Leu and Asp-2078-Gly Mutations in ACCase Gene, Endow Cross-resistance to APP, CHD, and PPZ in Phalaris minor from Mexico

Herbicides that inhibit acetyl coenzyme A carboxylase (ACCase) are commonly used in Mexico to control weedy grasses such as little seed canarygrass (Phalaris minor). These herbicides are classified into three major families (ariloxyphenoxypropionates (APP), cyclohexanodiones (CHD), and, recently, phenylpyrazolines (PPZ)). In this work, the resistance to ACCase (APP, CHD, and PPZ) inhibiting her...

متن کامل

A Novel W1999S Mutation and Non-Target Site Resistance Impact on Acetyl-CoA Carboxylase Inhibiting Herbicides to Varying Degrees in a UK Lolium multiflorum Population

BACKGROUND Acetyl-CoA carboxylase (ACCase) inhibiting herbicides are important products for the post-emergence control of grass weed species in small grain cereal crops. However, the appearance of resistance to ACCase herbicides over time has resulted in limited options for effective weed control of key species such as Lolium spp. In this study, we have used an integrated biological and molecul...

متن کامل

Study of Fitness Cost in Three Rigid Ryegrass Populations Susceptible and Resistant to Acetyl-CoA Carboxylase Inhibiting Herbicides

Citation: Sabet Zangeneh H, Mohammaddust Chamanabad HR, Zand E, Asghari A, Alamisaeid K, Travlos IS and Alebrahim MT (2016) Study of Fitness Cost in Three Rigid Ryegrass Populations Susceptible and Resistant to Acetyl-CoA Carboxylase Inhibiting Herbicides. Front. Ecol. Evol. 4:142. doi: 10.3389/fevo.2016.00142 Study of Fitness Cost in Three Rigid Ryegrass Populations Susceptible and Resistant t...

متن کامل

Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population.

The molecular basis of an acetyl-CoA carboxylase (ACCase) target-based resistant Lolium rigidum population (WLR 96) was studied here. The carboxyl-transferase domain of the plastidic ACCase gene from resistant individuals was amplified by PCR and sequenced. The DNA sequences were aligned and compared with a susceptible population. Six amino acid substitutions were identified in the resistant po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in plant science

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016